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ABSTRACT

As the electric grid undergoes the transition to a carbon free future,
many new techniques for optimizing the grid’s energy usage and
carbon footprint are being designed. A common technique used
by many approaches is to reduce the energy usage of the grid’s
peak demand periods since doing so is beneficial for reducing the
carbon usage of the grid. Consequently, the design of peak forecast-
ing methods that predict when and how much peak demand will
be seen is at the heart of many energy optimization approaches.
In this paper, we present PeakTK, an open-source toolkit and ref-
erence datasets for peak forecasting in energy systems. PeakTK
implements a range of peak forecasting methods that have been
proposed recently and exposes them through well-defined inter-
faces and library modules. Our goal is to improve reproducibility
of energy systems research by providing a common framework
for evaluating and comparing new peak forecasting algorithms.
Further, PeakTK provides libraries to enable researchers and practi-
tioners to easily incorporate peak forecasting methods into their
research when implementing higher level grid optimizations. We
discuss the design and implementation of PeakTK and present case
studies to demonstrate how PeakTK can be used for forecasting or
quantitative comparisons of energy optimization methods.
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1 INTRODUCTION

The electric grid and associated energy systems are in the midst of
an energy transition to a carbon-free future. Decarbonization the
world’s energy producers and its various consumers is a challenging
task and requires incorporating new clean renewable sources into
sectors such as buildings, infrastructure, and transportation.

While many techniques have been developed for grid energy
optimization, optimizing peak energy use is particularly important
from a decarbonization standpoint. For example, peaking power
plants that operate during peak periods contribute disproportion-
ately to carbon emission since they tend to be older and less efficient
equipment. In recent years, a range of techniques has been proposed
for optimizing peak energy use. To illustrate, energy storage batter-
ies have been employed during peak periods to absorb some of the
grid’s peak demand [24, 29]. Such approaches, called peak shaving,
charge the battery during off-peak periods and discharge during
peak periods. Similarly, numerous demand-response schemes have
been developed to reduce the consumption of electrical loads during
peak periods [13, 19, 23]. In addition, flexible EV charging schemes
have been developed to be grid friendly by opportunistically charg-
ing when grid demand is low and charging less when demand is
high [2, 34]. Finally, load scheduling approaches have been designed
to shift elastic loads from peak to off-peak periods [5].

A common characteristic of these approaches is that they mod-
ulate demand during “peak” periods, e.g., the peak hours of a day
or the peak day of the month or season. Consequently, all of these
approaches depend on some form of peak prediction to enable
this information to be used in the subsequent optimization. For
example, battery-based peak shaving methods need an estimate of
the magnitude of peak demand that will occur so that they shave
some of this demand using the battery. Grid-friendly EV charging
and load scheduling techniques require an estimate of the times
at which peak demand will occur so that they can shift their de-
mand to other off-peak hours. Demand-response schemes need an
estimate of which days of the month or season of the year will see
peak demand so that demand response can be activated on these
days. While the problem of peak prediction or forecasting comes
in many flavors, it is an essential building block for a broad range
of higher-level grid optimization techniques that improve energy
efficiency and enable decarbonization.

A number of peak prediction approaches have been proposed
and developed recently, but the researchers face many challenges
in this field. First, as in many emerging areas, the field lacks com-
mon benchmarks and datasets to enable comparison of various
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approaches with newly proposed ones. Second, recent techniques
have not made their implementations or datasets available to the
community, which impedes reproducibility and requires researchers
to re-implement algorithms from prior work in order to compare
against them. Re-implementing algorithms from prior work is not
an easy task since some details are left to the designer. Finally,
the lack of common datasets also implies that experimental results
are not directly comparable across papers due to the use of dif-
ferent datasets. As a result, reproducing and assessing those peak
forecasting algorithms is challenging.

To address these problems, in this paper, we present PeakTK, an
open source toolkit that provides reference implementations of a
range of peak forecasting techniques and reference energy datasets.
Our primary goal is to improve the reproducibility of research
results in the field by providing easy-to-use open-source implemen-
tations of state-of-the-art peak forecasting approaches, including
some of our own, along with reference datasets for experimenta-
tion. A related goal is to provide libraries and interfaces to enable
researchers and practitioners to incorporate peak forecasting into
other research, or commercial systems, then perform higher-level
grid optimizations. PeakTK is similar in spirit to other recent open-
source energy toolkits such as NILMTK [7] and SolarTK [6] that
have provided open-source reference implementations and data
for other energy problems and have seen strong adoption by the
research community. PeakTK addresses a similar unmet need in the
context of energy forecasting, which is a building block for many
energy optimization problems. In addition to providing a common
framework for evaluating and comparing new peak forecasting al-
gorithms, PeakTK’s architecture is extensible—new algorithms and
reference datasets can be added to it for use by others, enabling the
community to benefit from future research in the area. PeakTK’s
source code and datasets are available on Github for use by the
community: https:/github.com/umassos/peak-tk.

Implementing a toolkit such as PeakTK poses multiple challenges.
First, the ability to collect various peak prediction algorithms in
the energy domain and unify them under a common interface that
includes a common way to train, run and evaluate algorithms on
the same dataset is non-trivial. Second, the ability to reproduce
each technique in a manner that faithfully follows the algorithm as
described in the original literature is another non-trivial endeavor.
Lastly, the ability of the toolkit to run all algorithms in an interop-
erable manner that enables direct comparison with each other is
also non-trivial and poses a great challenge to reproduce. All these
items present great challenges that must be overcome both from
a research and implementation perspective, and demonstrate the
importance of making such a tool available to the community.

In designing and implementing PeakTK, we make the following
contributions;

(1) Peak Forecasting Taxonomy. We provide a taxonomy of
peak forecasting and modeling problems in the literature and
discuss various state of the art methods. Using this taxonomy,
we discuss several state of the art techniques for determining
both the magnitude of the peak demand and when it occurs.

(2) PeakTK Reference Implementations. We present the ex-
tensible architecture of the PeakTK framework and its in-
terfaces exposed to users and applications for generating
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energy forecasting. We then discuss reference implemen-
tations of several state-of-the-art forecasting methods for
peak forecasting problems in PeakTK, i.e., peak demand pre-
diction, peak hour, peak day of the month, and peak day of
the year prediction and also describe the energy datasets
included in the toolkit for experimental comparisons.

Case Studies. Finally, we present multiple case studies to
demonstrate how PeakTK can be used for forecasting and
quantitative comparison of energy optimization methods.
Our case studies show how PeakTK can be incorporated
into battery scheduling techniques, as well as how PeakTK
can be used to compare the performance of different peak
prediction approaches using reference datasets.

2 BACKGROUND

In this section, we provide a taxonomy of peak forecasting tech-
niques and discuss several state of the art techniques that have been
proposed recently.

Peak forecasting can be viewed as the problem of estimating,
or predicting, the actual peak energy demand over a certain time
window as well as the duration within that window when the
peak demand will occur. Thus, there are two components to peak
forecasting: (i) determining the magnitude of the energy demand,
and (ii) determining the time when the peak energy demand occurs.
The time window over which both of these factors are estimated
also yields different flavors to the forecasting problem. While some
higher-level techniques require estimates of both the magnitude
of the peak and time duration when it occurs, other techniques
only need a prediction of one of these components. For example,
an intelligent EV charging algorithm may only need a prediction
of when the peak grid demand will occur, so that it can defer EV
charging to other times. As a result, the actual magnitude of the
peak is not important in this case. In contrast, a peak shaving
technique using batteries may need predictions of the size of the
peak and the duration when it occurs, so that it can determine how
much of that peak to shave and when to operate the batteries to do
so.

The literature has studied both components of peak forecasting,
together and separately, and also studied the problem over different
time granularities, e.g., a day, month, year, etc. Figure 1 shows a
taxonomy of various approaches.

2.1 Determining When the Peak Occurs

Many peak forecasting techniques operate on a daily basis, where
they estimate the peak hours of the day (usually in the evening)
when the peak demand will occur. We call this peak hour forecast-
ing, and it is useful for a range of methods, including battery-based
peak shaving, EV charging, and more. Other techniques operate
over a monthly or yearly time window. The peak day of the month
problem involves determining the one day within each month that
will see the greatest energy demand. This technique is useful for
estimating (and reducing) demand charges, or the so-called peak
surcharge, where a consumer pays a surcharge on their monthly
bill based on their consumption during the peak day in each month;
lowering consumption in such periods yields a reduction in monthly
energy bills. The peak day of the year (or season) problem involves
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Peak forecasting |

| How much (magnitude) | | When (time) |
Time window | Day | | Month | | Year | | Day | | Month | | Year |
LSTM LSTM LSTM, VPeak, CPP,
Example models SVR, SVR, SVR, LSTM, Probabilistic, Stopping,
SARIMA SARIMA SARIMA LSTM prob Extreme temp. Probabilistic

Figure 1: Taxonomy of various p

determining the peak day, or the top-N peak days, during each year.
These peaks days are often used by utilities and grid operators to set
annual capacity charges for customers. Regardless of whether the
time window is a day, a month, or a year, the forecasting problem
involves estimating when the peak demand will occur and not the
magnitude of the demand.

2.2 Determining the Magnitude of the Peak
Demand

The other component of peak forecasting is to determine the mag-
nitude of the peak demand, which can either be the mean value or a
time series of energy demand over the peak demand window. This
problem is also related to the well-studied problem of demand fore-
casting or load forecasting, which involves determining the future
energy demand over some time window. Over a time window of a
day, peak demand forecasting may involve predicting the hourly
demand during the peak period, which is often in the evening. Over
a monthly or yearly granularity, it may involve predicting the daily
energy demand on the peak day of the month or the peak day of the
year. One approach for peak demand forecasting is to first perform
normal demand forecasting to derive a time series of demand over
the whole window and then simply choose the highest predicted
values as the peak demand. An alternative approach is to directly
predict the peak demand values, using, for instance, the historical
peak values.

2.3 Types of Peak Prediction Algorithms

Having discussed the taxonomy, we now present an overview of
the approaches that have been proposed in the literature for each
type of prediction. Our goal here is to discuss various approaches
using the above taxonomy, while deferring a detailed discussion
and implementation of these algorithms to Section 3.2.

Peak days of the year prediction. The goal of this approach
is to predict the n days in a year that have the highest peak demand.
The results of this prediction are used by utility companies to assess
a surcharge to their customers, specifically large commercial and
industrial customers for their consumption during these peak days.
For example, in the 5 Coincident Peaks (5CP) program in Ontario,
Canada, utility companies charge their commercial customers for
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their contribution to the load during the peak days of the year [18].
This also allows utility companies to set aside additional energy
resources in preparation for the expected higher demand during
these peak days. Similarly, consumers themselves can use the results
of such predictions to predict the expected peak days and curtail
their load to avoid the surcharges.

Peak days of the month prediction. In this approach, the goal
is to predict the n days in a month with the highest energy demand.
Similar to the previous approach, the results of this prediction can
be used by utility companies to determine a peak surcharge for
their large customers, as well as customers using such results to
know when to curtail their load in order to avoid extra peak charges.
A number of grid energy optimizations can also be implemented
using this approach. For instance, VPeak [8] uses a prediction of
the peak days of the month to devise an optimal policy of utilizing
volunteered resources for peak shaving.

Peak hours of the day prediction. This involves predicting
the hour of the day during which the grid is expected to see the
highest energy demand. To determine the expected peak hour, the
energy demand for the next day is first predicted, and the hour with
the highest demand is selected as the peak hour. Using this approach,
a variety of grid energy optimizations such as battery-driven peak
shaving can be implemented. For example, Soman et al. [31] propose
a deep learning based approach that predicts the k hours of each
day with the highest and lowest demand for micro-grids. Using this
peak forecasting technique, a battery-based peak shaving approach
is implemented for a micro-grid resulting in significant annual
energy savings. Similarly, Liu and Brown [22] propose an LSTM
model that predicts the peak demand 24 hours ahead which not
only helps to improve the reliability of electricity supply, but also
helps consumers to avoid surcharges that are charged for electricity
consumption during peak periods.

Peak demand prediction. The goal of this approach is to pro-
vide the estimated peak demand within a specified time frame.
Utility companies can use this approach to plan ahead for expected
peak demand, e.g., by incorporating a specific amount of energy
storage into the grid to absorb the extra energy demand. Peak de-
mand prediction uses historical energy and weather data along
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with weather forecast data to predict expected demand in the fu-
ture. Various approaches utilizing time series analysis and ma-
chine learning methods have been proposed to solve this problem
[3,8,9, 18, 22, 31].

Table 1 shows a summary of the existing approaches. For each
approach, the table shows the capabilities and the various types of
predictions the algorithm supports. Various datasets have also been
introduced to evaluate the performance of each of these approaches
in peak prediction. PeakTK aims to unify these approaches into a
single toolkit that exposes a well-defined interface. PeakTK also
allows customization of each approach based on the parameters of
each algorithm. In addition, PeakTK allows for the implementation
of custom and new algorithms using the same unified interface. We
also provide reference datasets that can be used to evaluate the per-
formance of new algorithms compared to preexisting approaches.

2.4 Related Energy Toolkits

To the best of our knowledge, there is currently no open-source or
closed-source toolkit that is specifically designed for peak forecast-
ing in energy systems. However, there are other energy toolkits
as well as more general-purpose toolkits that are related to elec-
tricity demand prediction, inferring energy usage, and rare-event
detection, which we discuss below.

PeakTK is directly inspired by two prior open-source toolKkits,
NILMTK and SokarTK, that have provided reference implementa-
tions of energy algorithms and datasets for other energy problems.
Due to the open-source nature of both toolkits, they have seen good
adoption by the research community and enabled comparable and
reproducible experimental results in many subsequent publications.
We designed PeakTK with a similar goal in mind.

NILMTK [7] is a well-known open-source toolkit in the energy
domain that provides source implementations of a range of non-
intrusive load monitoring (NILM) algorithms such as Combinato-
rial Optimization and Factorial Hidden Markov Models. A NILM
algorithm breaks down (“disaggregates”) a household’s aggregate
electricity demand into individual load-level components, which
can then be used to analyze the energy usage of the household. The
toolkit also includes public data sets, standard data structure, statis-
tics, diagnostic functions, and accuracy metrics for benchmarking
NILM algorithms. NILMTK uses an extensible design, and other
researchers have contributed to its repository of algorithm imple-
mentations and datasets, a feature that we adopt for PeakTK as well.
SolarTK [6] is another open-source toolkit for modeling and fore-
casting the output of residential solar arrays. SolarTK implements
various forecasting algorithms that take the location, weather, and
historical data as inputs to learn a model that can predict the future
solar generation from that array. PeakTK’s models can estimate
the physical specifications, the maximum generation potential, and
the weather-adjusted generation of a solar site. The toolkit also
includes a microgrid dataset of hundreds of households, including
solar power generation and energy consumption. Both NILMTK
and SolarTK are open source and implemented in Python.

Time-series forecasting is a general forecasting technique that
can predict future values of a time series based on the given histor-
ical trends. However, they are not specifically built for the energy
domain and substantial effort is needed on the part of a researcher
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to develop and train a time series model for energy or peak fore-
casting. PeakTK seeks to simplify this task by providing pre-built
time series-based forecasting methods for peak energy prediction
from recent literature.

More broadly, Prophet [32] is an open-source software for time-
series data forecasting developed by Facebook. It supports seasonal-
ity, such as seasonal data or daily/weekly/monthly/yearly patterns.
The software is implemented in R and Python. FABLE [25] is also
an open-source collection of commonly used time series forecast-
ing models such as the ARIMA model, Exponential smoothing
state-space model, time series linear models, simple method for
benchmarking, and neural network autoregressors. The framework
also provides the tools to evaluate and visualize.

Another type of tool related to peak prediction is anomaly de-
tection or extreme event detection, which focuses on detecting an
anomaly in time-series data. For example, luminol [21] is a python
library for time-series data analysis which has anomaly detection
as its main feature. The library is developed by LinkedIn. Python
toolkit for detecting outlying objects (PyOD) [35] is a toolkit that
has more than 30 detection algorithms and has been widely used in
academic research and commercial products. Telemanom [17] is an
anomaly detection using LSTMs and automatic thresholding. The
tool is implemented in Python using Keras/Tensorflow. While peak
detection can be viewed broadly as a type of anomaly detection,
adopting such techniques to the energy domain requires careful de-
sign and training, while PeakTK provides many pre-built reference
implementations to simplify this task for researchers.

3 PEAKTK PEAK ENERGY FORECASTING
TOOLKIT

In this section, we discuss PeakTK’s architecture, components and
implementation. We also define PeakTK’s interfaces and provide
example uses in the latter part of this section.

3.1 PeakTK Design and Architecture

At a high level, PeakTK is a collection of data-driven algorithms
and machine learning techniques that perform two main functions:
(i) learn an energy model and its parameters, and (ii) predict the
peak energy demand using the learned model, both in terms of
the timing and magnitude of the peak. From a user’s perspective,
PeakTK exposes a set of interfaces that enable a user to perform
these functions while abstracting the lower-level implementation
details of each approach from the user.

The primary goal of PeakTK is to provide reference implementa-
tions and datasets to enable a common framework for experimen-
tation, quantitative comparisons, and use in higher-level energy
optimizations. To do so, PeakTK’s design strives for simplicity and
provides extensibility. The interfaces provided by the toolkit are
easy to use and understand, making PeakTK user-friendly for the
end-user. All features are encapsulated into their respective mod-
ules. The interfaces only expose necessary and essential functions
while hiding unnecessary details from the user. The second goal
is to make the toolkit extensible by allowing developers to add
new data and algorithms to the toolkit easily. We provide a list of
basic API functions that new objects have to implement. This list
serves as a guide for developers and ensures that new objects are
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Table 1: An Overview of the Algorithms in PeakTK toolkit

Algorithm

Type

Type of Prediction

LSTM hourly demand prediction [31]
LSTM probabilistic classification [22]
VPeak [8]

Probabilistic peak day prediction [18]
Extreme Temperature approach
CPP [14]

Stopping approach [3]
Probabilistic peak prediction [18]
SARIMA
SVR
LSTM-based demand forecasting [9]

Machine learning
Machine learning
Machine learning
Time series analysis
Time series analysis
Time series analysis
Time series analysis
Time series analysis
Time series analysis
Machine learning
Machine learning

Next day hourly demand prediction
Next day peak hour prediction
Peak days of the month prediction
Peak days of the month prediction
Peak days of the month prediction
Peak days of the year prediction
Peak days of the year prediction
Peak days of the year prediction
Demand prediction
Demand prediction
Demand prediction

compatible with existing modules. Moreover, to keep the interface
simple and compact, we make sure that the number of methods a
new class must implement is minimal. The toolkit is implemented
in Python 3 which is known for being powerful, fast, and easy
to learn. The language has been widely used by many Machine
Learning libraries such as Sklearn [28], Tensorflow [1], and Pytorch
[27]. This allows PeakTK to access and utilize these libraries, since
machine learning and data-driven approaches are at the core of
peak prediction techniques.

Figure 2 depicts an overview of PeakTK. As shown in the figure,
model learning and prediction are the two main logical components
of the toolkit. In the learning phase, PeakTK adopts a data-driven
approach to manipulate and learn an energy model using input
data. During learning, PeakTK can use either a machine learning
or a time-series analysis based approach depending on the specific
algorithm chosen by the user. Some aspects of peak prediction also
make use of exogenous factors such as weather data to perform
prediction, i.e., by learning the relationship between energy usage
and weather parameters, such as temperature, the expected demand
can be predicted by analyzing the weather forecast. In such cases,
weather forecast data can be supplied as input during prediction to
enable such prediction. Finally, in the prediction phase, the learned
model is used to generate predictions, i.e., peak hours of the day,
peak days of the month, peak days of the year, or the expected peak
demand.

Depending on whether the learned energy model is machine
learning or time series based, different modules are loaded to sup-
port the specified approach. We now discuss some of these functions
and the modules that implement them in detail.

Preprocessing. This functionality is provided by the data prepro-
cessor module which implements various pre-processing functions
that are commonly used for preparing the input data for peak pre-
diction models such as loading, peak day labeling, upsampling and
downsampling, data splitting, and data scaling.

Loading. This functionality is provided by the labeling compo-
nent which is responsible for converting the raw input data into
PeakTK’s data input format, which is used throughout the pipeline.
Developers can easily develop an importer for a new dataset by
implementing the importer interface. PeakTK’s importer generally
requires historical electric load data and weather data. The toolkit
also provides a helper function for merging two datasets as long
as they have a common index, e.g., date time. Currently, PeakTK
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provides importers for ISO-NE!, ESO?, and Smart* apartment data®
and weather data from the DarkSky API* (See Table 3).

Labeling. Data labeling is provided by the labeling helper compo-
nent which assigns a label to the n peak days of each month or
year based on the user goal. n can be varied based on the number
of peak days the user wishes to predict. This is especially useful for
machine learning based approaches which rely on the labeled data
to train, validate and test the learned model.

Splitting and scaling. For machine learning based approaches,
PeakTK provides time-based splitting by allowing the user to spec-
ify the date and time or percentage of the data in each split using
the data splitter component. We also provide data scaling functions
using the Min-Max Scaler, Standard Scaler and Max-Abs Scaler
from the Sklearn library [28].

3.2 Peak Forecasting Algorithms and
Reference Implementations

PeatTK implements a variety of peak and demand prediction al-
gorithms. In this section, we discuss various algorithms for peak
energy prediction and their reference implementations in PeakTK.

3.2.1 Peak hours of the day prediction. Two peak hour of the day
prediction algorithms are supported in PeakTK. Both of these algo-
rithms are based on the popular LSTM deep learning architecture.

(1) LSTM-based hourly probabilistic classification. Proposed
by Liu and Brown [22], this approach uses an LSTM model
to generate next day hourly probabilities for how likely it is
for a particular hour of the day to be a peak hour. LSTM is a
variant of Recurrent Neural Network (RNN) which is known
for working well at capturing the sequential dependencies
in time-series data since it learns from the previous state
information to make prediction decisions. In PeakTK, we
use this LSTM model to generate all next day hourly peak
probabilities (24 hours) and then use descending sort order
to determine the top n peak hours of the day.

The proposed model architecture is as follows. First, the
model is made up of 6 hidden layers, each containing 24
neurons. Next, the authors set the look back distance to
24 — since the model operates at hourly granularity, this
distance enables the model to learn from the past 24 hours

Uhttps://www.iso-ne.com/isoexpress/web/reports/load-and-demand
Zhttps://data.nationalgrideso.com/data-groups/demand
Shttp://traces.cs.umass.edu/index.php/Smart/Smart
“https://darksky.net/dev
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Figure 2: Overview of PeakTK.

i.e., one day. Note that the ratio of peak to non-peak hours
is highly imbalanced i.e., out of 24 hours in a day, the goal
is to predict the one peak hour — a 1:23 ratio. This may
lead to disproportionately low probabilities for the positive
class. To address this problem, the authors apply Equation
1 to re-compute the final probabilities, where P represents
the probability generated by the model. Since summer and
winter seasons present different usage patterns, the authors
propose building two separate models for the two seasons.

Pfinal = 0.1 X yPpypge1 X 100 (1)

To evaluate the performance of the proposed model, the au-
thors use a power demand dataset collected from the city of
Ontario, Canada. The data contains power demand recorded
over a 5-year period (2003-2008), and is recorded in hourly
granularity. This model outperforms all other approaches
evaluated by the authors and achieves 0.68, 0.87, and 0.98 in
precision, recall and accuracy scores respectively for win-
ter predictions. For summer predictions, this LSTM model
achieves 0.42, 0.44, and 0.95 in precision, recall, and accuracy
scores respectively. PeakTK implements this model as is, and
performs the distinction between seasons under the hood,
thereby abstracting all implementation details from the end
user.

LSTM-based hourly demand prediction. Next, we adopt
the LSTM-based hourly demand prediction approach pro-
posed by Soman et al. [31] for peak hour prediction. The
authors propose an LSTM-based peak forecasting approach
that is designed for predicting the top — k and bottom — k
high and low demand hours for a day. Using the output of
this model, PeakTK selects the top n peak hours of a day
depending on the number of hours for which prediction is
required. The model requires historic hourly demand over a
2-day period to make predictions over the next 24 hours i.e.,
top-k hours of the day that experience the highest demand.
The authors implement two model variants. First, a 2-layer
configuration that is made up of 100 and 80 neurons in each
layer, and second, a 4-layer configuration that is made up of
100, 90, 80, and 70 neurons in each hidden layer respectively.
To train the model, the authors use Adam optimizer with an
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adaptive learning rate of 0.1 to 0.005, and 0.2 drop out. To
select optimal hyperparameters, the authors use grid search
for both model configurations. The authors then evaluate
the performance of the proposed models using a real world
dataset collected from a micro-grid of 156 buildings. The
4-layer model outperforms all other prediction models in all
evaluations ranging from 1-5 peak hours of the day predic-
tions. In PeakTK, we adopt the 4-layer model as the second
peak hour of the day prediction algorithm. We note that this
approach is extensible, and can be used to predict more than
1 peak hour of the day by varying the value of n. Our imple-
mentation comes configured with default hyperparameters
(as specified in the original work), with the ability to specify
different values for different peak prediction environments.

3.2.2  Peak days of the month prediction. PeakTK provides an im-
plementation of three peak days of the month approaches.

(1) Probabilistic approach. PeakTK provides a modified ver-

~

sion of the original probabilistic approach, which aims to
pick peak days of the year, proposed by Jiang et al. [18]. The
approach chooses a day with predicted demand and forecast
temperature higher than the peak demand and extreme tem-
perature thresholds, then calculates the probability that it
will be a peak day by using 14-day demand forecast and the
peak day it has seen so far. More details on how the algorithm
originally works can be found in 3.2.3. In the peak day of the
month version, we add a separate peak demand threshold
and extreme temperature threshold for each month since
each month can have a different load profile and climate. The
extreme temperature can also be ignored in some months.
For instance, the temperatures in spring and fall are usually
mild and consistent over the month. Hence, using an extreme
temperature threshold does not help select the peak day of
those months. The rest of the approach works as in the case
of yearly peak days prediction with up to 14 days of demand
forecast look ahead.

Extreme temperature approach. Temperature is one of
the main primary factors that can help determine the magni-
tude of electric demand. When the temperature is high, air
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conditioners will be turned on. On the other hand, the tem-
perature is low. The difference between room temperature
and outside temperature also has an impact on how much en-
ergy is used for cooling or heating. The extreme temperature
approach utilizes these facts to determine whether tomorrow
is a peak day or not using just the predicted temperature.
By giving historical temperature data, quantile value, and
summer/winter months, the model learns the extreme tem-
perature value as a threshold for each month. And to select
a peak day, the model compares the forecast temperature
with the threshold of that month. If the forecast temperature
is considered extreme (lower than the threshold value for

of a month.
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period. Second, the initial peak threshold T is also required
which represents a starting point for peak day selection. Over
time, this threshold is adjusted by CPP based on observed
conditions. Third, CPP also requires a threshold adjustment
value which is either added or subtracted from the threshold
depending on the number of peak days selected by CPP at a
particular time. Finally, a list of the days in a month during
which the threshold should be adjusted can also be provided.
CPP uses this list to determine the days of a month during
which the threshold can be adjusted. For example, if 1 and
15 are provided, CPP adjusts the peak threshold every 1st
and 15th day of the month.

winter or higher for summer), that day will be predicted as (2) Stopping approach. Optimal stopping is a problem of choos-
a peak day. ing the time to take an action that is likely to maximize
(3) VPeak. VPeak [8] is a machine learning and threshold-based the expected reward or minimize the expected cost. For ex-
approach for predicting the peak days of the month. The ample, the secretary problem involves choosing the best
algorithm computes the cumulative distribution function secretary from the pool but with some special rules. First,
(CDF) of the peak days distributed over each month in past the interviewer will interview and gain information about
years and uses that distribution to select peak days in the one secretary at a time and must decide immediately after
future. The threshold is adjusted by comparing the ratio of the interview whether to hire or reject that secretary. The
selected peak days with that of the historical distribution. information about the subsequent applicants is unknown,
If the ratio is lower than that in the distribution, the algo- and rejected secretary cannot be recalled. The goal of the
rithm becomes more aggressive in picking peak days, i.e., problem is to hire the best secretary. There are other simi-
by reducing the peak threshold, and thus more days are se- lar problems, such as the marriage problem or the sultan’s
lected as peak ones due to the lower threshold. On the other dowry problem. Jiang et al. [18] proposed applying the idea
hand, the algorithm becomes more conservative in select- of the matroid secretary problem, which was introduced by
ing peak days if the number of peak days selected for the Babaioff, Immorlica, and Kleinberg [3], to the peak day pre-
month is higher than the expected value from the histori- diction problem since picking k-peakest day in the given year
cal distribution. Therefore, the peak threshold is adjusted is similar to the k-secretary problem. The basic form of the
upwards, which results in fewer peak days being selected stopping approach in PeakTK is as the following: first, this
due to the high peak threshold VPeak requires for the main approach first observes m number of days of the year and
inputs. First, historical energy data is required for computing selects the highest day demand as the peak threshold. Then,
the historical CDF. Second, the peak demand threshold for from the (m + 1)!* day onwards, any day with predicted
each month in the historical data is also required. VPeak uses demand exceeding the peak threshold is considered a peak
this information to adjust the threshold based on the season day, while any day with predicted demand that falls below
of prediction. Third, the threshold update frequency which the threshold is marked as a non-peak day. In PeakTK, this
determines how often the peak threshold should be updated algorithm requires as input the number of days to observe
is also required as input. For example, if the frequency is 3, m and the number of peak days to predict n. The algorithm
the threshold is updated every three days. Finally, the num- stops when n peak days have been picked, or it reaches the
ber of peak days to select per month is also required as input. end of the year.
Using this information, VPeak outputs the top n peak days (3) Probabilistic approach. Proposed by Jiang et al. [18], the

key idea of this technique is to compute the probability that
the next day will be one of the n peak days based on the peak

3.2.3  Peak days of the year prediction. For this problem, three peak
days of the year prediction techniques are implemented.

(1) CPP approach. The CPP approach is a threshold-based peak

days it has seen so far, and the look-ahead forecast days it
can see. The algorithm applies a look ahead approach which
analyzes up to 14-day energy demand forecast to generate

day prediction algorithm used by a California utility [14].
CPP requires demand forecasting to predict the absolute peak
demand expected on a particular day. The peak demand is
then compared to the peak threshold, which can be adjusted
dynamically over time, to determine whether a particular
day is a peak day or not. If the peak demand on a day is
higher than the threshold, then the day is labeled as a peak
day. Conversely, days whose peak demand falls below the
peak threshold are considered non-peak days. In PeakTK, the
CPP approach requires 4 main parameters. First, the number
of peak days n, which should be selected as peak days for the
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predictions. In the original implementation, 14-day short-
term demand forecast was used as the look ahead period. In
PeakTK, this parameter can be tuned to support the number
of available demand forecast days since 14-day energy de-
mand forecasts may not always be available. In addition to
the number of look ahead forecast days, the implementation
of this algorithm also supports the peak demand threshold,
peak probability threshold, extreme temperature threshold
and the number of peak days n as parameters. To determine
whether a day is a peak day or not, the algorithm compares
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the day’s predicted demand with the peak threshold as well
as the temperature with the temperature threshold. These
two thresholds are also updated over time for more accurate
prediction. Lastly, it is important to note that the look ahead
demand forecast should be provided as additional input to
this algorithm.

3.24 Demand prediction. PeakTK provides the implementation of
three demand forecasting algorithms.

(1) SARIMA. Seasonal ARIMA is the extension of ARIMA model,
a well-known time-series forecasting which combines the
differencing with AutoRegressive (AR) and Moving Average
(MA). SARIMA extends ARIMA by adding a capability to
model seasonal data. It has been widely used in many areas
such as tourism forecasting [16], traffic flow forecasting [10],
and energy demand prediction [11] which are heavily influ-
enced by seasonal weather changes. PeakTK’s SARIMA im-
plementation uses the Statsmodel library [30] and supports
the order (p, d, q) and seasonal order (P, D, Q) parameters
only. This is because these are the most relevant to demand
and peak day prediction. The remaining parameters use the
default values as defined in the library. Finally, the number
of observations per year m is also provided as a parameter.

(2) SVR-based demand forecasting. Support Vector Regres-
sor (SVR), a regressor version of the Support Vector Machine
(SVM) is a supervised machine learning technique that can
predict discrete values. SVR has been used widely for predict-
ing electric load demand [12, 33]. The goal of SVR is to find
the best hyperplane that can accurately estimate the output
values from the input. SVR allows user to define an accept-
able error margin € and the regularization value C which
can increase/decrease the penalization from the slack values
&. The SVR find the optimal hyperplane by minimizing the
following function:

N
1
min5||W||2+c;<§,- +E%) @
Subject to the following constraints:

yi —(w, ¢, (x;)) —b < e+

(W, . (xi)) + b —yi < €+ &ix ®)
&, &% 20
PeakTK’s implementation of SVR uses the Sklearn library

[28].

(3) LSTM-based demand forecasting. Lastly, PeakTK provides
a deep learning based demand forecasting approach that is
based on PowerLSTM proposed by Cheng et al. [9]. Pow-
erLSTM is made up of a two-layered LSTM network con-
sisting of 32 and 16 neurons each respectively. To train and
evaluate the model, the authors use a real world and pub-
licly available power usage dataset [4]. The authors use one
month of data to train and evaluate the model — training is
performed on the first 28 days of the month of July, while
prediction is performed on the remaining three days of the
month. The authors show that PowerLSTM significantly
outperforms other demand prediction approaches by up to
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28.58% in MSE reduction. Since PowerLSTM is a relatively
simple architecture, PeakTK provides its implementation as
one of the demand forecasting algorithms. The implementa-
tion in PeakTK requires 7 days of historical demand, 7 days
of weather information, as well as the next day’s weather
forecast to predict the next day’s peak demand.

3.3 PeakTK Implementation

PeakTK is implemented in Python3. We also provide a packaged
installer that can be installed via pip. As noted earlier, our imple-
mentation relies on several Python libraries, such as the Pandas
data analysis library [26], NumPy scientific computing python li-
brary [15], Sklearn machine learning and predictive data analysis
library [28], and the Statsmodel statistical modeling library [30].
We also use imbalanced-learn [20], a library for re-sampling imbal-
anced datasets, and Tensorflow [27], a deep learning library. We
expose a modularized API for performing various prediction tasks.
We also provide numerous examples of using the library in the
documentation section.

For instance, Figure 4 shows the process of using PeakTK to
perform peak days of the month prediction on one of the reference
datasets. The example process covers all essential steps, including
loading the dataset into PeakTK’s data input format, preprocessing
and splitting the data for training and testing, using demand pre-
diction and peak prediction algorithms, and evaluating the results.
Each step is encapsulated into one or a few lines of code which
is convenient for the user to make changes. For example, if the
user wants to test an algorithm on another dataset, they can simply
change one line of code to load a different dataset and run the
pipeline again. Switching algorithms also requires changing just a
few lines of code.

Table 2 shows a summary of all modules available in PeakTK. The
four main modules i.e. demand_prediction, peakday_prediction_yearly,
peakday_prediction_monthly, and peakhour_prediction, contain the
implementation of peak prediction algorithms discussed in 3.2. The
preprocessing module includes helper functions for manipulating
the data such as scaling, train-test splitting and oversampling/under-
sampling. The dataloader module provides code for converting the
reference datasets into PeakTK’s data input format. The stats sub-
package contains statistic-related helper functions such as ground
truth peak day labeling. Lastly, the metrics module includes accuracy
metric functions (e.g., recall, precision) for evaluating the results.

3.4 Reference datasets

Along with the PeakTK library, we include three reference datasets
i.e., two grid datasets from different geographic locations as well as
different climatic conditions, and a microgrid (400+ houses) electric
usage dataset. All datasets are publicly available and can be down-
loaded directly from the official sources indicated for each dataset.
In our case, each reference dataset is a subset of the original dataset
that is curated and cleaned for ingestion by PeakTK’s forecasting
algorithms.

While the included datasets share multiple similarities i.e., they
are all grid electric usage datasets, they also possess structural dif-
ferences that make them suitable for varying prediction tasks. First,
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Table 2: Summary of PeakTK modules

PeakTK package

‘ Description

peaktk.demand_prediction subpackage

- peaktk.demand_prediction.SARIMA

- peaktk.demand_prediction.SVR

- peaktk.demand_prediction. LSTM_DP
peaktk.peakday_prediction_yearly subpackage

- peaktk.peakday_prediction_yearly.CPP_approach

- peaktk.peakday_prediction_yearly.stopping_approach

- peaktk.peakday_prediction_yearly.probabilistic_yearly
peaktk.peakday_prediction_monthly subpackage

- peaktk.peakday_prediction_monthly.VPeak

- peaktk.peakday_prediction_monthly.probabilistic_monthly
- peaktk.peakday_prediction_monthly.extreme_temperature

peak demand prediction routines

peak day of the year prediction routines

peak day of the month prediction routines

peaktk.peakhour_prediction subpackage
- peaktk.peakhour_prediction LSTM_peakhour

- peaktk.peakhour_prediction.LSTM_probabilistic

peaktk.preprocessing subpackage
- peaktk.preprocessing.helper

- peaktk.preprocessing.imbalance

- peaktk.preprocessing.preprocessing
peaktk.dataloader subpackage

- peaktk.dataloader.ESO_helper

- peaktk.dataloaderISONE_helper

- peaktk.dataloader.SmartStar_helper
peaktk.stats subpackage

- peaktk.stats.peakday_helper

- peaktk.stats.threshold_helper
peaktk.metrics subpackage

- peaktk.metrics.metrics

peak hour of the day prediction routines

data preprocessing routines

dataset helper routines

statistics computational routines

evaluation metric routines

the included datasets have been collected from different geograph-
ical locations that experience different climatic conditions. This
helps in evaluating the generalizability of the algorithms imple-
mented in PeakTK by performing prediction tasks on data with
varying seasonal patterns. For instance, data collected from the
North Eastern region of the United States portrays different sum-
mer and winter intensities from European sourced data. Second, the
datasets are available at varying granularities i.e., data is recorded
at hourly, 30-minute and 15-minute intervals. This enables the
comparison of peak prediction algorithms that perform prediction
at fine and coarse granularities. The datasets also have different
amounts of demand forecast data, with one of the datasets lacking
any form of look ahead information. This enables PeakTK to evalu-
ate algorithms that require look ahead information, as well as those
that do not. Finally, the datasets are available across different time
durations. This heterogeneity of the datasets included in PeakTK
enables the implementation and evaluation of a wide range of peak
prediction algorithms and covers most use cases in peak prediction
tasks.

ISO New England dataset. The ISO New England dataset > con-
tains electricity consumption data in the New England region of
the USA. The data consists of three-day energy demand forecast at
hourly granularity and historical electricity demand at 5-minute
granularity. This makes ISO an ideal dataset for peak prediction
and evaluation tasks. In PeakTK, we include ISO-NE hourly de-
mand data from the three-year period from 2018 to 2020. Figure
3a depicts the energy demand along with temperature data for the
New England region across the whole period. Energy demand de-
picts a yearly bi-modal peak i.e., during December-February and

Shttps://www.iso-ne.com/isoexpress/web/reports/load-and-demand
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June-August. This coincides with winter and summer seasons in
this region. The figure also shows that temperature has an inverse
relationship with energy demand during winter months i.e., as the
temperature decreases, the energy demand increases, and a direct
relationship during summer months i.e., as the temperature rises
during summer, the aggregate energy demand also increases. This
can be attributed to heating and cooling requirements respectively.
NationalGrid ESO dataset. The National Grid releases open data
from Great Britain’s energy usage operators. ¢ The data contains
up to 14-day ahead demand forecast as well as historical demand
information at half-hour granularity. In PeakTK, we include 30-
minute ESO historical demand for the 5 year period from 2016 to
2020. Figure 3b depicts the energy demand in the region across
the whole period. Energy demand indicates a yearly unimodal
peak ie., between January-March, which coincides with winter
months in the region. The figure also shows that temperature has
an inverse relationship with energy demand i.e., as temperature
decreases during winter months, the energy demand increases due
to increased heating requirements. As the temperature increases
during the summer months, the energy demand does not increase
linearly with temperature, indicating that cooling demand in the
region is lower than heating energy demand.

Smart* dataset. The Smart* dataset’ contains minute-level elec-
tricity usage data from 400+ anonymous homes. Due to the disag-
gregated nature of the dataset, peak prediction can be performed
at micro-grid level e.g. for a collection of homes using this dataset.
PeakTK includes the Smart* Apartment data released in 2017 from
the one-year period between 2015 and 2016. The apartment dataset
contains data collected from 114 single-family apartments. Figure

®https://data.nationalgrideso.com/data-groups/demand
7http://traces.cs.umass.edu/index.php/Smart/Smart
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3c depicts the aggregate demand from all apartments in the dataset,
along with the temperature data during the same period. Energy
demand shows a unimodal peak, with the electric demand being
lowest during summer months, and highest during winter months.
We attribute this observation to the fact that the apartment homes
from which this data was collected lack HVAC units, and there-
fore, the overall energy demand during summer is made up of
internal appliances only. However, space heating in the apartments
uses electric energy, hence the high energy demand during winter
months.

Weather data. In addition to energy forecast and historical demand
data, we also provide weather data which is required by some
algorithms for peak prediction. For each of the three reference
datasets, we select a representative location for the region and
gather weather data at hourly granularity from the DarkSky API
8, Since Dark Sky is scheduled to be deprecated at the end of 2022,
PeakTK also plans to support other weather data sources such as
Tomorrow.io Weather API °.

4 PEAKTK CASE STUDIES

In this section, we illustrate several use cases for the PeakTK toolkit.
Since the algorithms implemented in PeakTK were published else-
where, the goal of our experimental case study is not to perform
detailed comparisons — rather, we illustrate how PeakTK’s modu-
lar approach simplifies comparisons between forecasting methods.
We also show how PeakTK can be incorporated into higher-level
energy optimization techniques such as battery scheduling.

4.1 Peak Demand Forecasting

Our first case study shows how PeakTK can be employed to estimate
the magnitude of the peak demand in the future. For this case study,
we choose the time window to be one day and use PeakTK’s LSTM-
based demand forecasting algorithm. We train the LSTM model
using the ISO New England dataset and weather data for Boston,
USA. We then use test data from the ISO dataset to make predictions
using the trained LSTM model. We test the model over a five month
test period (June to October).

Figure 5a depicts the result of this experiment. The figure shows
that the LSTM model is able to predict energy demand accurately,
including months of high energy usage e.g., August, as well as
months of lower energy usage e.g., October. To measure the quality
of prediction, we compute the RMSE between the actual and pre-
dicted demand for each day in the test period. The RMSE is 1358.78,
which corresponds with prediction results made in the original
study. Similarly, Figure 5b depicts the actual and predicted demand
over a one-week period. The figure shows the variation in demand
across different days of the week e.g., weekend usage is lower than
weekday usage. The figure also shows that the LSTM model per-
forms well on this prediction task with an RMSE of 1091.49, which
corresponds to the results observed in the original study.

4.2 Peak Hours and Day Forecasting
Our second case study illustrates how PeakTK can be used to fore-

cast the specific hours in a day or days in a month or year during

8https://darksky.net/dev
“https://www.tomorrow.io/weather-api/
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which peak demand is experienced. A secondary goal of this exper-
iment is to demonstrate the comparability of various algorithms on
the same prediction task. Using the ISO New England dataset for
the year 2020, we use PeakTK to predict peak hours using different
algorithms, thereby showing how PeakTK can be used to compare
the performance of various algorithms on the same prediction task.

We begin our analysis by examining the performance of two
peak hour of the day prediction algorithms implemented in PeakTK.
Figure 6a depicts the performance of two peak hour prediction al-
gorithms i.e., LSTM and LSTM probabilistic on the same dataset.
The figure shows that the LSTM model outperforms the proba-
bilistic variants on all the metrics evaluated. LSTM probabilistic
achieves precision, recall, and balanced accuracy scores of 0.78,
0.78, and 0.83, respectively. On the other hand, the LSTM model
achieves precision, recall and balanced accuracy scores of 0.84, 0.84,
and 0.83, outperforming the probabilistic variant in precision and
recall by 0.06 and 0.06, respectively. This experiment illustrates
how PeakTK can be used to quickly compare the performance of
different approaches on the same prediction task.

Next, we analyze and compare the performance of three peak
day of the year algorithms that are made available in PeakTK. Fig-
ure 6b depicts the performance of these three algorithms i.e. CPP,
stopping, and probabilistic approaches. For this experiment, we use
the ISO-NE dataset, and perform prediction for the year 2020. For
all three algorithms, we set n = 10 — i.e., our goal is to predict the
10 days of the year that experience the highest peak demand. The
figure shows that the probabilistic approach achieves precision, re-
call, and balanced accuracy scores of 0.6, 0.6, and 0.79, respectively.
The figure also shows that the stopping approach achieves preci-
sion, recall, and balanced accuracy scores of 0.78, 0.7, and 0.84, and
outperforms the probabilistic approach by 0.18, 0.1, and 0.05 respec-
tively. Finally, the figure shows that the CPP approach outperforms
the other two algorithms for this task, achieving precision, recall,
and balanced accuracy scores of 0.8, 0.8, and 0.89 respectively.

We then compare the performance of three peak day of the
month prediction algorithms implemented in PeakTK — i.e., ex-
treme temperature, VPeak, and the probabilistic approach. For this
experiment, we use the ISO-NE dataset, and setn =3 and A = 3 —
i.e., our goal is to predict the three days in a month that experience
the highest peak demand by first finding the 6 peak days of the
month and selecting the three highest days as a subset. Figure 7a
depicts the results of this analysis. The figure shows that VPeak
outperforms the other two algorithms, achieving precision, recall,
and balanced accuracy scores of 0.45, 0.61, and 0.76, respectively.
This is consistent with the observations made in the original work
where VPeak was compared with the other two approaches in sim-
ilar tasks. The figure also indicates that the probabilistic approach
achieves higher recall and balanced accuracy scores (0.61 and 0.74
vs 0.48 and 0.68 respectively) compared to the extreme temperature
approach. However, the precision score is significantly lower than
the extreme temperature approach. This indicates that the two algo-
rithms may be suitable for different prediction scenarios depending
on the importance of each metric, and demonstrates how PeakTK
can be used to aid in the making of such decisions.

To further analyze the performance of VPeak on peak days of
the month prediction, we vary the number of predicted days and
examine the resulting effect on precision, recall, and accuracy scores.
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\ ISO-NE | ESO | Smart*
Type of data Grid Grid Households
Data granularity Hourly 30-minute 15-minute
Weather data granularity Hourly Hourly Hourly
Duration 2018 to 2020 2016 to 2020 | 2015 to 2016
Demand forecast 3-day ahead 14-day ahead None
Location | New England, US | Great Britain MA, USA

Table 3: Summary of PeakTK’s reference datasets
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Figure 3: (3a) ISO New England demand and associated temperature from January 2018 to December 2020, (3b) NationalGrid
ESO demand and related associated temperature from January 2015 to December 2020, and (3c) Smart* households demand

and associated temperature from January 2015 to December 2016

For this experiment, we use the same ISO-NE dataset and vary n
from 1 to 3. We set A = 3 — i.e,, we predict n + 3 days for each
value of n. We then analyze the precision, recall, and balanced
accuracy scores for each value of n. Figure 7b depicts the results
of this analysis. The figure shows that as the value of n increases,
precision, recall and balanced accuracy scores also increase. This is
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because as the value of n increases, the probability of selecting a
day that is part of the peak days of the month also increases, and the
algorithm performs better for higher values of n. This observation
is consistent with the experiments performed in the original work,
and shows how PeakTK can be used to enable the reproducibility
of experimental results for various algorithms.
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import peaktk

# load ISO-NE data

Bovornkeeratiroj, et al.

ISONE_data = peaktk.dataloader .ISONE_helper.load_data (DEMAND_PATH, WEATHER PATH)

# data preprocessing and preparation

ISONE_data_scale, y_scaler = peaktk.preprocessing.scale (ISONE_data, min=0, max=1)
X, y, idx = peaktk.dataloader.ISONE_helper.create_dataset (ISONE_data_scale)

X _train, X_test, y_train, y_test, idx_train, idx_test

= peaktk.preprocessing.train_test_split(X, y, idx,

# train demand prediction

test_size =366)

Istm_model = peaktk.demand_prediction.lstm_dp.LSTMDemandPrediction ()

Istm_model. fit (X_train, y_train, epochs=1000, verbose=1)
# predict peak demand
y_hat = lstm_model. predict (X _test)

pred_demand = y_scaler.inverse_transform (y_hat). flatten ()

# set the number of peak days to predict and delta day
num_peakday=3, delta=3

# create and train peak day prediction model from historical

load

vpeak_model = peaktk.peakday_prediction_monthly.vpeak.VPeak_Selection ()

vpeak_model. train (y_train, idx_train,
# predict peak day one day at a time
y_pred_peak = []

for i in range(len(pred_demand)):

top_k=num_peakday+delta)

curr_date = idx_test[i]
curr_pred_demand = pred_demand=[i]
is_peak = vpeak_model. predict_ispeak (curr_date, curr_pred_demand)

y_pred_peak.append(is_peak)

# find groundtruth peak day

y_test_peak = peaktk.stats.peakday_helper.identify_monthly_peak (ISONE_data, top_k=num_peakday)

# evaluate the results
precision = peaktk.metrics.metrics.precision(y_test_peak,

y_pred_peak)

recall = peaktk.metrics.metrics.recall (y_test_peak, y_pred_peak)

balanced_accuracy = peaktk.metrics.metrics.balanced_accuracy (y_test_peak, y_pred_peak)

Figure 4: Example usage of the PeakTK’s pipeline

Next, we analyze and compare the performance of various algo-
rithms implemented in PeakTK across different time scales. To do
so, we perform peak day of the month prediction on the ISO-NE
dataset from the year 2020 using three algorithms for all months of
the year. We set n = 3 and A = 3 — i.e., our goal is to predict the
top 3 days with the highest peak with 3 extra comparative days.
For each algorithm, we analyze the month-on-month prediction
performance, as well as compare the overall performance of each
algorithm with each other. Figure 8a depicts the results of this
analysis. The figure shows the applicability of different algorithms
during different months of the year. For instance, the extreme tem-
perature approach missed all peak days in January, April, and June.
This is because the algorithm is based on temperature data only,
and months that fail to experience extreme temperature relative to
other days of the month may fail to trigger the algorithm’s thresh-
old. The figure also shows that since VPeak takes into account both
temperature and load data, its performance is consistent through-
out the year. The average recall for VPeak across all months of the
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year is 0.61. This experiment demonstrates the ability of PeakTK to
identify applicable algorithms across varying time scales.

Lastly, we compare the performance of peak day of the year
prediction algorithms implemented in PeakTK. To do so, we perform
peak day prediction for 4 different years i.e., 2017-2019 using the
ESO dataset. We use the first two years of the ESO dataset i.e. 2015
and 2016 for training, and the rest for our prediction task. For each
year, we use the three peak day of the year prediction algorithms
implemented in PeakTK and compare their recall across the whole
period. We set n = 10 — i.e., our goal is to predict the top 10 days
in each year that experience the highest load demand. Figure 8b
depicts the results of this analysis. The figure shows that the recall
for each algorithm varies from year to year e.g., CPP’s recall is lower
in the first two years than in the last two. The figure also shows
the difference in year-to-year consistency across algorithms e.g.,
the probabilistic approach is more consistent in recall year-on-year
compared to the other two algorithms. This analysis shows how
PeakTK can be used to compare the overall performance of various
algorithms across different time scales. In this case, the probabilistic
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Figure 5: (5a) Actual and predicted demand using one of the demand prediction algorithms in PeakTK, and (5b), Comparison

of actual and predicted demand over one week period
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Figure 6: (6a), Comparison of precision, recall and accuracy of the two peak hours of the day prediction algorithms in PeakTK,
and (6b) Performance of peak days of the year prediction algorithms implemented in PeakTK.

approach outperforms the other two approaches with an average
recall of 0.45 across the 4 year period.

4.3 Battery scheduling

Peak shaving is a form of grid energy optimization that reduces the
load on the grid during durations of peak demand. Utility companies
deploy resources such as energy storage batteries in the distribution
grid and operate them during peak demand hours. To perform peak
shaving efficiently, utility companies must first estimate when the
peak demand will occur, and how much, i.e., magnitude, of demand
during the predicted peak period. This enables the utility to size
the required resources, e.g., battery size, that must be dispatched

during the peak demand hours in order to curtail the peak load.

Since energy storage provides a finite amount of energy that can be
depleted, it is important that utility companies accurately predict
the peak demand so they can dispatch stored energy only during
peak hours and recharge the grid batteries during off-peak hours.
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We now show how PeakTK can be used to determine when en-
ergy storage should be dispatched for peak shaving. To do so, we
use the ISO New England dataset included in PeakTK. We assume
that the utility has installed 2000MWh energy storage in the grid
to be used for peak load reduction. We then use PeakTK’s peak
demand prediction module to forecast next day energy demand for
a period of 1 year. For each peak hour of the day, we dispatch the
limited energy in the battery and recharge the battery during off-
peak hours. Figure 9a depicts the true demand and predicted energy
demand for a sample day from the dataset using the LSTM-based
hourly demand prediction technique implemented in PeakTK. The
figure shows that 4-8 PM is the peak hour of the day, and this is
the hour during which energy storage should be dispatched. We
perform this prediction for all days of the year while discharging
the battery during peak hours and charging during off-peak hours.
Figure 9b shows the original demand and the demand after dis-
patching the battery for peak shaving for one week. For the whole
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Figure 8: (8a), Performance of peak day of the month algorithms over month using ISO-NE dataset, and (8b) Performance of
peak day of the year algorithms over year using ESO dataset.

duration, we show that peak load can be shaved by using PeakTK to
judiciously deploy energy storage during peak hours and recharge
during off-peak hours. As can be seen in the figure, 2.2-2.8% of the
peak can be shaved using this technique which reduces daily peak
demand up to 400MWh.

5 CONCLUSIONS

Since the design of peak forecasting methods that predict the magni-
tude and time window of peak demand are at the heart of many en-
ergy optimization approaches, in this paper, we presented PeakTK,
an open tool and reference datasets peak forecasting in energy
systems. PeakTK implements a range of peak forecasting meth-
ods that have been proposed recently and exposes them through
interfaces and library modules. We discussed the design and im-
plementation of PeakTK and the various forecasting methods that
are implemented by the tool. In the current release, PeakTK imple-
ments probabilistic, time-series-based and machine learning-based
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forecasting methods. Our framework is extensible and allows new
algorithms and reference datasets to be added to it by the broader
community. Finally, we presented case studies to demonstrate how
PeakTK can be used for forecasting or quantitative comparisons
of energy optimization methods. Our case studies illustrated how
PeakTK can be employed for quantitative comparisons of forecast-
ing methods and be used in higher-level energy optimizations such
as battery scheduling. As future work, we plan to add support
for other open datasets into PeakTK and provide sample code to
illustrate typical use cases.
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